Tetrahedron Letters,Vol.25,No.38,pp 4267-4270,1984 0040-4039/84 \$3.00 + .oo ©1984 Pergamon Press Ltd.

> INSECTICIDAL AMIDES. SYNTHESIS OF NATURAL $2(E)$, $4(E)$, $10(E)$ -PIPERCIDE, ITS $2(E)$, $4(E)$, $10(Z)$ - STEREOMER, AND RELATED ISOBUTYLAMIDES

> > Leslie Crombie and Raymond Denman Department of Chemistry, The University, Nottingham, NG7 2RD.

Summary: Natural \lceil all (E) \rceil pipercide and its 2(E), 4(E), 10(Z)- stereomer are synthesised, the latter having superior insecticidal potency and knock down. lO,ll-Dihydro- and lO,ll-dehydropipercides are also prepared.

Various natural straight-chain unsaturated isobutylamides found especially in the Compositae, Piperaceae and Rutaceae families possess insecticidal activity, generally embraced within a structure $(1)_+^1$ In (1) the acid has a chain length of 10 to 20 or more carbon atoms, $z=1,2$, or perhaps more double bonds having (E) - stereochemistry, and $y=2,3$ or perhaps more double bonds with $(E)/(Z)$ - or $(Z)/(Z)$ - geometry.¹ Usually the first double bond of

Me [CH2] ECH=CH] CH2CH2 [CH=CH] CO-NHCH2CH. (1)

the y grouping, counting from the carboxyl end, is (2) -, and there is substantial diminution in insecticidal activity if this is stereomutated to (E) -.² More recently a 2(E), 4(E)- undecatrienoic isobutylamide carrying an ll-(3,4-methylenedioxyphenyl)- substituent, pipercide (6), has been isolated from Piper nigrum and reported to be insecticidally active against the Adzuki bean-weevil (Callosobruchus chinensis).³ In the present work we have synthesised both natural pipercide and its $10(2)$ - stereomer to compare, in the light of findings in the purely aliphatic series, their relative insecticidal potencies.

 $2(E)$, $4(E)$, $10(E)$ -Pipercide was synthesised according to Scheme 1. 1,6-Hexanediol was converted into its monobromide via a procedure employing continuous hexane extraction and then protected as the tetrahydropyranyl derivative (2) .⁴ Grignard formation and reaction with piperonal gave the half-protected diol (3) in 70% yield. The latter was then heated at 75°C for lh with methyl triphenoxyphosphonium iodide in hexamethylphosphoramide.⁵ In one step this effected a virtually stereospecific dehydration to the (E) olefin and transformed the pyranyloxy-group to the iodide, in high yield. The iodo-product (4) was now oxidised to the (E)-aldehyde (5) using anhydrous trimethylamine N-oxide in dry chloroform.⁶ Wadsworth-Emmons reaction,⁷

4267

 S cheme 1. Synthesis of $2(E), 4(E), 10(E)$ -Pipercide

although proceeding in modest yield, formed the $2(E)$, $4(E)$ -diene system in one step. Synthesis of the amide $(6)^{8}$,⁹ was completed by standard steps and comparison was made with natural pipercide. 10

Synthesis of 10, 11-dihydropipercide (9), which also occurs in Piper $\texttt{nigrum,}^{11}$ was effected from (3) by hydrogenolysis (Pd/C) of the benzylic hydroxyl followed by depyranylation (86% overall) to give (7). Oxidation with pyridinium chlorochromate gave the aldehyde (8) almost quantitatively, converted into dihydropipercide, m.p. 94-95°C, by the steps used in Scheme 1, and in similar yields. Dihydropipercide is insecticidally active and synergises the activity of pipercide.¹¹

The synthesis of $2(\underline{E})$, $4(\underline{E})$, $10(\underline{Z})$ - pipercide (14) is shown in Scheme 2. 3,4-Methylenedioxyphenylacetylene¹² was lithiated in dry dimethylsulphoxide to give, on Ahmed-Strong chain extension, the acetylenic chloride (10) which was semi-hydrogenated. cis-Chloride (11) did not readily form a Grignard reagent and was therefore converted into the aldehyde (13) via the nitrile $(12)^{13}$ which was reduced with diisobutylaluminium hydride:¹⁴ both steps proceeded in excellent yield. Completion of the synthesis of $(14)^{15}$ then followed similar lines to that for the $(E)-(E)$, $(E)-$ isomer. By proceeding directly from the acetylenic halide (11), omitting the semi-hydrogenation, 10,11-dehydropipercide m.p. 128 - 130°C (15) was also made.

As an assurance of stereoisomeric purity the ¹³Cmr spectra (62.9 MHz) of our synthetic $2(\underline{E})$, 4, (\underline{E}) , 10(\underline{E}) - and $2(\underline{E})$, 4(\underline{E}), 10(\underline{Z}) - pipercides were determined

Scheme 2. Synthesis of $2(E)$, $4(E)$, $10(Z)$ -Pipercide

and assignments are as shown. There was no evidence of isomeric inhomogeneity for either (6) or (14). Chemical shifts for C-3 and C-5, being very close, were assigned by specific proton decoupling.

Evaluation of isobutylamides (6) and (14) against the common housefly (Musca domestica) has shown that the 2(E),4(E),1O(Z)-stereomer is indeed more effective than the all-($\underline{\mathtt{E}}$) both as regards kill and knockdown. 1^b - Full details will be published elsewhere.

References

- 1. L. Crombie and A.H.A. Krasinski, Chem. and Ind., 1962, 983.
- 2. e.g. L. Crombie and J.D. Shah, J.Chem.Soc., 1955, 4244.
- 3. M. Miyakado, I. Nakayama, H. Yoshioka and N. Nakatani, Agric.Biol.Chem., 1979, 43, 1609.
- 4. O.L. Chapman, K.C. Mattes, R.S. Sheridan and J.A. Klun, J.Am.Chem.Soc., 1978, 100, 4878.
- 5. (a) R.O. Hutchins, M.G. Hutchins and C.A. Milewski, J.Org.Chem., 1972, 37, 4190; (b) S.R. Landauer and H.N. Rydon, J.Chem.Soc., 1953, 2224.
- 6. (a) V. Franzen, 'Organic Synthesis: Collective Volume 5'. Ed. H.E. Baumgarten, Wiley, New York, 1973, p.872; (b) W.J. Hickinbottom, 'Reactions of Organic Compounds', 3rd Ed., Longmans, London, 1957, p.420.
- 7. R.S. Burden and L. Crombie, J.Chem.Soc., 1969, 2477.
- 8. <u>all</u>-(E)-Pipercide had M⁺ 355.2146, λ_{max} (EtOH): 212(log ε 4.41), 261(4.63), 268i(4.59) and 304(3.78)nm, v_{max} (KBr): 3300, 1660, 1638, 1620 cm⁻¹. The ¹Hmr spectrum (250 MHz, CDCl₃) showed resonances at δ : 0.92 (d,6H, J 6.7 Hz; $3"$, $4"$ -Me), $1.47(m, 4H; 7, 8-CH₂'s)$, $1.81(m, 1H; 2"$ -H $)$, $2.17(m, 4H; 6, 9-CH₂'s)$, 3.16 (dt, 2H; 1"-H), 5.59 (broad t, 1H; NH), 5.76 (d, 1H, J 15.3 Hz; 2-H) 5.93 (s, 2H; \cdot OCH₂O, 5.60 (t, 1H; 1O-H), 6.06 (t, 1H, 5-H), 6.15 (dd, 1H, J 15 and 9.5 Hz; 4-<u>H</u>), 6.29 (d, 1H, <u>J</u> 15.5 Hz; 11-<u>H</u>), 6.76 (s, 2H; 2' and 5'-H), 6.90 (s, 1H, 6'-H), 7.20 (dd, 1H, <u>J</u> 14.8, 10.1 Hz, 3-H): from cyclohexane, the sample melted at 120°C after prior softening (lit.³ m.p. $114 - 115^{\circ}$ C).
- 9. An earlier synthesis of pipercide has been reported: M. Miyakado and H. Yoshioka, Agric.Biol.Chem., 1979, 2413.
- **10.** Dr. Miyakado has kindly supplied us with the infra-red and 60 MHz (CDCl₃) $^\perp$ Hmr spectra of natural pipercide. Our 2(E),4(E),10(Z), isomer (14) is clearly different, and our synthetic $2(E)$, $4(E)$, $10(E)$ isomer (6) bears much closer resemblance. A small sample of Dr. Miyakodo's synthetic pipercide in our hands partially melted at 75"C, the last material disappearing at 113°C. On examination at 250 MHz (CDC1₃) two closely spaced methylenedioxy signals were observed, δ 5.93 and 5.95. A doublet of triplets at 5.53, J 11.6 Hz, coupled to a doublet at 6.31, J 11.6 Hz signified $10(2)$ - material whilst a doublet at 6.29, J, 15.6 Hz signified the 11-H of the $10(E)$ -olefin. Characteristic of the $2(E)$, $4(E)$, $10(E)$ isomer (see below), the multiplet at 2.31 due to the $9-CH_2$, was also present. Integration indicates 55% $2(E)$, $4(E)$, $10(Z)$ - and $45%$ $2(E)$, $4(E)$, 10(E)- pipercides.
- 11. M. Miyakado, I. Nakayama and H. Yoshioka, Agric.Biol.Chem.,1980, 44, 1701.
- 12. W. Feuerstein and M.Heimann, Ber., 1901, 34, 1468.
- 13. L. Friedman and H. Schechter, J.Org.Chem., 1960, 25, 877.
- 14. E. Winterfeldt, Synthesis, 1975, 617.
- 15. 2(E), 4(E), $10(\underline{2})$ -Pipercide had M' 355.2108, $\lambda_{\sf max}$ (EtOH): 209(Log ε 4.27), 261(4.45), 297 infl. (3.46), v_{max} (KBr): 3320, 1660, 1630, 1620 cm⁻¹ The $\frac{1}{1}$ Hmr spectrum (250 MHz, CDCI;) showed resonances at δ :0.91 (d, 6H , $J 6.7 Hz$; $3"$, $4"$ -Me), 1.51 (m, $4H$; $7, 8$ -C h_2 's), 1.80 (septet, $1H$; $2"H$) 2.13 (m, 2H; $6-C_{H_2}$), 2.30 (m, 2H; $9-C_{H_2}$), 3.14 (t, 2H, 1"-H), 5.52 (dt, IH, $\frac{J}{J}$ 11.6 Hz; 10-H), 5.85 (d, 1H, $\frac{J}{J}$ 15 Hz; 2-H), 5.93 (s, 2H; \cdot \cdot OCH₂O \cdot), 6.02 (t, $1H$; 5-H), 6.06 (dd, $1H$, $J14.5$, $9.3 Hz$; $4-H$), 6.30 (d, $1H$, <u>J</u> 11.6; 11-<u>H</u>), 6.78 (m, 3H; 2',5',6'-<u>H</u>), 7.34 (dd, 1H, <u>J</u> 15.0, 10.0 Hz; 7-E). From cyclohexane, it had m.p. 88°C after prior softening.
- 16. We thank Dr. M.H. Black, Wellcome Research Laboratories, Berkhamsted, for arranging the insecticidal tests.

(Received in UK 10 July 1984)